1.3:  Complex Numbers
Notice that there is no real solution to  since the square of all real numbers is greater than or equal to zero.  Let’s examine this a little closer.
· If , then 
· If , then 
· If , then 
· Thus, for any real number (positive, negative, or zero), none of them have a square that is negative.
· So, if there is a solution to , then it cannot be a real number.
No problem, we will define a new set of numbers that are not real to use as solutions for equations like this.  We define  with the property that  so that  is a solution to this equation.   is known as the imaginary unit and is the basis of the set of complex numbers.  Notice that  is also a solution to the equation .
Definition – A complex number is any number that can be written in the form  where  and  are real numbers.  Note that all real numbers, , are also complex since they can be written as .  Thus, the real numbers are a subset of the complex numbers.  
If we recall that  means that  is a subset of , then we have
, 
which shows that every natural number is an integer, every integer is rational, every rational number is real, and every real number is complex.
A complex number that can be written in the form  is a pure imaginary number.
A nonreal complex number can be written in the form , where  and 
Important Note:  Let  be a positive real number.  Then,  .  While  is an equivalent expression, it is not commonly used because it could be easily confused with , which is different.
Example:  .
Note in this example it would have been incorrect to use the negative times negative equals positive convention that is familiar for real numbers to get .  Remember that    and  are not real numbers, so they are not “negative” and that property is not valid.  The complex numbers have many of the same properties as real numbers such as commutativity, associativity, identity, and inverses of addition and multiplication as well as a distributive property.  What’s missing is an order.  Reals can be ordered on a number line, the complex numbers can’t.
Examples:  Simplify each of the following and write all complex numbers with  notation.
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· 

· 

· 

· 
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· 

Addition of complex numbers works just as you’d imagine.  .  Just combine like terms.  
Examples of addition/subtraction:
· 
·  

· 

· 

Multiplication of complex numbers can be done by using the distributive property and .
Examples of multiplication:
· 

· 

· 

· 

· 

· 

· 

Division is trickier because the denominator is usually a radical.  Multiply the numerator and denominator by the conjugate of the denominator to eliminate the radical denominator 1st.  Let’s define what is meant by a conjugate before going further.  If  is a complex number, then it’s conjugate is , the same first part but opposite second part.
Examples of conjugates.  Fill in the table.
	Complex Number
	Conjugate

	
	

	
	

	
	

	
	

	
	

	
	



Examples of division:  
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Powers of  are interesting to look at because a neat pattern emerges.  See if you can notice it.
	Powers of 
	Simplified Form

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	


Examples of Powers of 
· 

· 

· 

· 

· 

Is a number a solution to an equation?  Do you remember when we asked whether  was a solution to ?  Do you remember how to answer this?
Let’s now ask a similar question.  Is  a solution to ?







[bookmark: _GoBack]In the first equation, , you should remember a method to solve this so you can find the solution.  There’s also a method that we can use to solve the second equation, .  You may remember and you may not.  We’ll discuss this in class soon, but for now the best we can do is check that a given number is a solution.
